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Consider Detection of Water Vapor Trend


Sample CLARREO Slit Functions 

MODTRAN simulations 
used to predict changes in 
outgoing spectral radiance 
due to 0.4 kg/m2 per 
decade trend.

Define accuracy/stability 
requirements needed to 
detect trend. 

• Requires broad spectral 
coverage with moderate 
resolution. 

• Averages for climate 
require broad spatial 
sampling. 
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Sensitivity of Earth-Reflected Solar Radiance to Water Vapor  


Largest absolute changes (below right) occur 
in the sub-saturated VNIR water bands; 
largest fractional changes (below left) in the 
wings of the stronger SWIR bands.


CLARREO 
Requirement 

0.3% 
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Want Improved Radiometric Accuracies in Visible/NIR


•  Current instruments have >2% 
radiometric accuracy


Table 1: Uncertainty Summary for Vicarious Calibration Methods 

Methods/Type of 
Calibration 

Uncertainties Constraints 

Artificial Test Sites 
(Absolute) 

• Actual: 3.5% reflectance-
based, 2.8% radiance-based 

• Expected: 2.8% and 1.8% 

• Requires ground instrumentation  
• Requires good atmospheric conditions 
• Requires specific sensor programming 

Stable Deserts 
Multi-temporal and 

Multi-sensor 

• Actual: 3% 
• Expected: 1% with BRDF 

(bandpass dependent) 

• Requires specific sensor programming 
• Requires non-cloudy images 

The Moon 
Multi-temporal 

• Expected: 2% • Dynamic range is limited at high end 
• Req. specific programming & viewing 

The Moon 
Absolute 

• Actual: 5-10% 
• Expected: 2% 

• Dynamic range is limited at high end 
• Req. specific programming & viewing 
• Requires low uncertainty calibration and 

radiometric verification of the moon 
 

•  Accuracy and stability rely 
on ground calibrations, on-
board lamps, cross-
calibrations, solar diffusers, 
or lunar observations
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Best-Known Vis/NIR Radiometric Source On-Orbit Is Sun
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Active Cavity Radiometers Measure Solar Irradiance


Total Irradiance Monitor (TIM)

•  Accuracy 
100 ppm (1 σ)

•  Stability 
10 ppm/yr (1 σ)

•  Precision 
4 ppm (1 σ) 

NPOESS/TSIS


TIM


SIM


Measurement Range  0-10 W m2 nm-1 

Accuracy  0.2 %  
Long Term Stability 

 λ < 600 nm  0.02 %/yr  
 λ > 600 nm  0.01 %/yr  

Precision  0.01 % 
Spectral Resolution 

 λ< 280 nm  1 nm  
 280 nm < λ < 400 nm  5 nm  
 λ > 400 nm  35 nm 

Spectral Irradiance Monitor (SIM)

0.15 K of 

5800 K Sun 

Active cavities tied to 
electrical references 

see TSIS poster 
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Future TSIS/SIM Accuracy 0.1-0.2% With SIRCUS Calibration


Spectral Irradiance Monitor (SIM) is 
currently operating on SORCE and 
intended as part of NPOESS/TSIS.


NIST’s Spectral Irradiance and Radiance 
Responsivity Calibrations using Uniform Sources 

(SIRCUS) enables <0.1% spectral radiometric 
calibrations. 
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Short-Wave Requirements to Which IIP Is Designed


15° (180 km) (~370 pixels) Earth cross-track 
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Hyperspectral Imager Requirements
Parameter Value Units

Spatial Resolution 0.5 km
Spatial Range (cross-track) 200 km
Wavelength (min) 300 nm
Wavelength (max) 2400 nm
Spectral Resolution 10 nm
Relative Std Uncertainty 0.2 %
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Cross-Calibration Concept


Two spatial/spectral imagers cover 300-1000 
and 1000-2400 nm. 
Small (~2-cm) telescope optics image the 
Earth onto spectrographs. 
Radiance attenuation methods reduce 
intensity an accurately known amount, 
allowing cross-calibrations with Sun. 

Cross-calibration from TSIS gives intended accuracy of 0.2%. 

Precisely attenuate sunlight for cross-calibrations with 
the Total Solar Irradiance Sensor (TSIS) 

Hyperspectral Imager Requirements
Parameter Value Units

Spatial Resolution 0.5 km
Spatial Range (cross-track) 200 km
Wavelength (min) 300 nm
Wavelength (max) 2400 nm
Spectral Resolution 10 nm
Relative Std Uncertainty 0.2 %

Ratio of reflected (outgoing) to incoming 
solar radiation measured to <0.2%. 
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Need ~10-5 Attenuation
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SOLSTICE Achieves 10-9 Attenuation


The SOLSTICE instruments flown on UARS and SORCE track stability on-orbit by 
monitoring stars, which are 9 orders of magnitude dimmer than the Sun. 

SOLSTICE achieves 10-9 
attenuations via aperture 

selection (2x10-5) and 
integration times (10-2 to 10-3). 
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IIP Overview


•  Intent is to demonstrate cross-calibration capability from spectral solar 
irradiance to desired accuracies


•  Method is to prototype a visible (CCD-based) hyperspectral 
spectrometer with integrated attenuation methods and

–  Demonstrate accurate attenuation capabilities

–  Show a solar irradiance observation method


Cross-calibration concept applicable to 
many instruments; will be demonstrated in 

IIP using a hyperspectral imager. 
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What About Polarization?


•  Polarizers needed on-orbit for calibrations involving moon and 
instrument characterization

–  Solar radiance is unpolarized to ~10-4, but reflected lunar radiances and 

instrument are not

•  Polarimetry at levels needed for aerosols are much more demanding


–  Requires high polarization purity and co-temporal acquisition of 
orthogonal polarization states


•  Limited field of view

•  Discrete spectral bands


Trade of spectral continuity, spatial coverage, and radiometric accuracy for 
highly accurate polarimetric measurements has not been done.


But it should be... 
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TRLs


•  TRL 3

–  Optical design with integrated and accurate solar attenuation methods


•  TRL 4

–  Laboratory demonstration of completed hyperspectral imager and solar 

attenuation mechanisms

•  TRL 5


–  Quantified solar attenuation accuracies and solar irradiance measurement 
method


•  TRL 6

–  Demonstration at appropriate radiance levels via ground- or air-based 

solar observations and Earth scenes
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Key Milestones 

Objective   
Improve radiometric accuracy of visible & NIR 
hyperspectral imaging needed for Earth climate 
studies via cross-calibrations from spectral solar 
irradiances.  

Enable on-orbit end-to-end spatial/spectral imager 
radiometric calibrations and degradation tracking 
with 0.2% SI-traceable accuracy. 

Approach 
Investigate attenuation methods and accuracies 
allowing a hyperspectral imager to view the Sun and 
transfer spectral solar radiance measurements to 
Earth-viewing observations.  
Validate solar cross-calibration approach provides 
desired SI-traceable accuracies using a prototype 
300-1050 nm hyperspectral imager with precisely known 
attenuation methods and a detector calibrated by NIST 
for linearity across 6 orders of magnitude. 

TRLin = 3 

•  Optical Design & Detector Selection  03/2009 
•  NIST Photodiode Calibrations Complete  09/2009 
•  Detector Array Tested   06/2010 
•  Operating Spectrometer (TRL 4)   08/2010 
•  Quantified Attenuation Uncertainties (TRL 5)  04/2011 
•  Lab Calibrations & Field Studies (TRL 6)  06/2011 

Hyperspectral imager components 
accurately attenuate solar 
radiances (black) to Earth-viewing 
radiance levels (red, blue). 

10/2008 

Cross-calibration method applicable 
to 300-2500 nm spectral range. 


